Dirichlet problems for the anisotropic Darcy-Forchheimer-Brinkman system and related models

Andrei Gasparovici
Faculty of Mathematics and Computer Science
Babeș-Bolyai University
Cluj-Napoca, Romania
WYRM, May 18-19, 2023

Outline

(1) Preliminaries
(2) Dirichlet problem for the anisotropic Brinkman system
(3) Dirichlet problem for the anisotropic Darcy-Forchheimer-Brinkman system

44 Dirichlet problem for coupled anisotropic Darcy-Forchheimer-Brinkman equations
(5) Numerical results for the lid-driven porous cavity flow problem

Preliminaries

- Let $\mathfrak{D} \subset \mathbb{R}^{n}$ be a bounded Lipschitz domain $(n=2,3)$ occupied by a viscous incompressible fluid.
- Let $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)^{\top}$ be the velocity field and the π be the pressure field.
- Let $\mathbb{E}(\mathbf{u})=\left(E_{j \beta}(\mathbf{u})\right)_{1 \leq j, \beta \leq n}$ be the strain tensor field:

$$
\mathbb{E}(\mathbf{u})=\frac{1}{2}\left(\nabla \mathbf{u}+(\nabla \mathbf{u})^{\top}\right), \quad E_{j \beta}(\mathbf{u})=\frac{1}{2}\left(\partial_{j} u_{\beta}+\partial_{\beta} u_{j}\right), \quad 1 \leq j, \beta \leq n
$$

Preliminaries

The stress tensor field $\mathbb{T}=\left(T_{i \alpha}\right)_{1 \leq i, \alpha \leq n}$ of a general (anisotropic) Newtonian fluid satisfies the following constitutive relation:

$$
\begin{equation*}
T_{i \alpha}(\mathbf{u}, \pi)=-\pi \delta_{i \alpha}+a_{i j}^{\alpha \beta} E_{j \beta}(\mathbf{u}), \quad 1 \leq i, \alpha \leq n \tag{1}
\end{equation*}
$$

where $\mathbb{A}=\left(a_{i j}^{\alpha \beta}\right)_{1 \leq i, j, \alpha, \beta \leq n}$ is the viscosity tensor coefficient, whose entries satisfy ${ }^{1}$:

$$
\begin{equation*}
a_{i j}^{\alpha \beta}=a_{\alpha j}^{i \beta}=a_{i \beta}^{\alpha j} \quad 1 \leq i, j, \alpha, \beta \leq n . \tag{2}
\end{equation*}
$$

[^0]
Preliminaries

The divergence of the stress tensor field can be written component-wise in the following manner:

$$
\begin{equation*}
(\operatorname{div} \mathbb{T})_{i}=\partial_{\alpha} T_{i \alpha}=\partial_{\alpha}\left(a_{i j}^{\alpha \beta} E_{j \beta}(\mathbf{u})\right)-\delta_{i \alpha} \partial_{\alpha} \pi, \quad i=\overline{1, n} . \tag{3}
\end{equation*}
$$

We introduce the following second-order differential operator given in component-wise divergence form as (see, e.g., Kohr et al. 2021²):

$$
\begin{equation*}
(\mathcal{L} \mathbf{u})_{i}=\partial_{\alpha}\left(a_{i j}^{\alpha \beta} E_{j \beta}(\mathbf{u})\right), \quad i=\overline{1, n} . \tag{4}
\end{equation*}
$$

Then:

$$
\begin{equation*}
\operatorname{div} \mathbb{T}=\mathcal{L} \mathbf{u}-\nabla \pi \tag{5}
\end{equation*}
$$

[^1]
Preliminaries

Isotropic case

Remark

In particular, in the isotropic case, the entries of \mathbb{A} are given by:

$$
\begin{equation*}
a_{i j}^{\alpha \beta}=\mu\left(\delta_{\alpha j} \delta_{\beta i}+\delta_{\alpha \beta} \delta_{i j}\right), \quad 1 \leq i, j, \alpha, \beta \leq n \tag{6}
\end{equation*}
$$

Furthermore, for constant μ, the operator \mathcal{L} has the expression $\mathcal{L} \mathbf{u}=\mu \Delta \mathbf{u}$.

Preliminaries

The equations:

$$
\begin{cases}\mathcal{L} \mathbf{u}-\nabla \pi-\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}=\mathbf{f} & \text { in } \mathfrak{D} \tag{7}\\ \operatorname{div} \mathbf{u}=0 & \text { in } \mathfrak{D}\end{cases}
$$

determine the (steady-state) anisotropic Navier-Stokes system.

Boundary value problems for the anisotropic Stokes and Navier-Stokes systems were studied by Kohr, Mikhailov, and Wendland ${ }^{3,4,5}$ using variational and fixed-point techniques.

[^2]
Preliminaries

The Navier-Stokes system (7) can be generalized in order to model flows in porous media (see, e.g., Nield and Bejan ${ }^{6}$). In the anisotropic case, such a model is given by the system:

$$
\begin{cases}\mathcal{L} \mathbf{u}-\nabla \pi-\eta \mathbf{u}-\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}-\lambda|\mathbf{u}| \mathbf{u}=\mathbf{f} & \text { in } \mathfrak{D} \tag{8}\\ \operatorname{div} \mathbf{u}=0 & \text { in } \mathfrak{D}\end{cases}
$$

where η, κ, λ are parameters which depend on the physical properties of the fluid and the porous medium.

We refer to (8) as the anisotropic Darcy-Forchheimer-Brinkman (DFB) system. By following similar techniques as in Kohr et al. 2022 ${ }^{7,8}$, we study the non-homogeneous Dirichlet problem for such a system.

[^3]
Preliminaries

A bidisperse porous medium is a material composed of clusters of large particles that are agglomerations of small particles, or, alternatively, a standard porous medium in which fractures or tunnels have been introduced.

Fracture phase (f-phase)

Figure: Square cavity filled with a bidisperse porous medium

Preliminaries

Bidisperse porous media
Nield and Kuznetsov ${ }^{9,10}$ considered the following two-velocity model for steady-state momentum transfer in a bidisperse porous medium by extending the Brinkman model from the monodisperse case (* denotes dimensional variables):

$$
\left\{\begin{array}{l}
\mathbf{G}=\left(\frac{\mu}{K_{f}}\right) \mathbf{v}_{f}^{*}+\zeta\left(\mathbf{v}_{f}^{*}-\mathbf{v}_{p}^{*}\right)-\tilde{\mu}_{f}\left(\nabla^{*}\right)^{2} \mathbf{v}_{f}^{*}+\frac{c_{f} \rho}{K_{f}^{1 / 2}}\left|\mathbf{v}_{f}^{*}\right| \mathbf{v}_{f}^{*} \tag{9}\\
\mathbf{G}=\left(\frac{\mu}{K_{p}}\right) \mathbf{v}_{p}^{*}+\zeta\left(\mathbf{v}_{p}^{*}-\mathbf{v}_{f}^{*}\right)-\tilde{\mu}_{p}\left(\nabla^{*}\right)^{2} \mathbf{v}_{p}^{*}+\frac{c_{p} \rho}{K_{p}^{1 / 2}}\left|\mathbf{v}_{p}^{*}\right| \mathbf{v}_{p}^{*}
\end{array}\right.
$$

where:

- \mathbf{G} is the negative of the pressure gradient
- μ, ρ are the fluid viscosity and density
- $\tilde{\mu}_{f, p}$ and $K_{f, p}$ are the effective viscosities and permeabilities of the two phases
- $\mathbf{v}_{f}^{*}, \mathbf{v}_{p}^{*}$ are velocity fields associated with the two phases
- ζ is the coefficient for momentum transfer between the two phases

[^4]
Preliminaries

Bidisperse porous media

Kohr and Precup ${ }^{11}$ studied the homogeneous Dirichlet problem for the following system of coupled Navier-Stokes-type equations:

$$
\begin{cases}-\mu_{1} \Delta \mathbf{u}_{1}+\eta_{1} \mathbf{u}_{1}+\kappa_{1}\left(\mathbf{u}_{1} \cdot \nabla\right) \mathbf{u}_{1}+\nabla p_{1}=\mathbf{h}_{1}-\alpha_{1}\left|\mathbf{u}_{1}\right|^{p-1} \mathbf{u}_{1}-\gamma_{1}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right) & \text { in } \mathfrak{D} \tag{10}\\ -\mu_{2} \Delta \mathbf{u}_{2}+\eta_{2} \mathbf{u}_{2}+\kappa_{2}\left(\mathbf{u}_{2} \cdot \nabla\right) \mathbf{u}_{2}+\nabla p_{2}=\mathbf{h}_{2}-\alpha_{2}\left|\mathbf{u}_{2}\right|^{p-1} \mathbf{u}_{2}-\gamma_{2}\left(\mathbf{u}_{2}-\mathbf{u}_{1}\right) & \text { in } \mathfrak{D} \\ \operatorname{div} \mathbf{u}_{1}=0, \quad \operatorname{div} \mathbf{u}_{2}=0 & \text { in } \mathfrak{D}\end{cases}
$$

with parameters $\mu_{i}, \gamma_{i}>0, \eta_{i}, \kappa_{i}, \alpha_{i} \geq 0, i=1,2, p \geq 1$.

By following a similar approach, we study the non-homogeneous Dirichlet problem for a system of two coupled anisotropic DFB equations.

[^5]
Dirichlet problem for the anisotropic Brinkman system

First, we consider the case when $\kappa=\lambda=0$ and study the homogeneous Dirichlet problem:

$$
\begin{cases}\mathcal{L} \mathbf{u}-\nabla \pi-\eta \mathbf{u}=\mathbf{f} & \text { in } \mathfrak{D} \tag{11}\\ \operatorname{div} \mathbf{u}=0 & \text { in } \mathfrak{D} \\ \gamma_{\mathfrak{D}} \mathbf{u}=0 & \text { on } \partial \mathfrak{D}\end{cases}
$$

where:

- $\eta \in L^{\infty}(\mathfrak{D})^{n \times n}$ is a matrix-valued parameter endowed with the norm:

$$
\begin{equation*}
\|\eta\|=\max _{1 \leq i, j \leq n}\left\|\eta_{i j}\right\|_{L^{\infty}(\mathfrak{D})} \tag{12}
\end{equation*}
$$

- $\mathbf{f} \in H^{-1}(\mathfrak{D})^{n}$ is a given distribution
- $\gamma_{\mathfrak{D}}: H^{1}(\mathfrak{D}) \rightarrow H^{\frac{1}{2}}(\partial \mathfrak{D})$ is the trace operator

We assume that:
(A1) $a_{i j}^{\alpha \beta} \in L^{\infty}(\mathfrak{D})$ for any $1 \leq i, j, \alpha, \beta \leq n$ and we consider:

$$
\begin{equation*}
\|\mathbb{A}\|=\max _{1 \leq i, j, \alpha, \beta \leq n}\left\|a_{i j}^{\alpha \beta}\right\|_{L^{\infty}(\mathfrak{D})} \tag{13}
\end{equation*}
$$

(A2) \mathbb{A} satisfies the ellipticity condition only in terms all symmetric matrices in $\mathbb{R}^{n \times n}$ with zero trace, i.e.,

$$
\begin{align*}
\exists C_{\mathbb{A}}>0 \text { s.t. } a_{i j}^{\alpha \beta} \xi_{i \alpha} \xi_{j \beta} \geq C_{\mathbb{A}}^{-1}|\boldsymbol{\xi}|^{2}, & \forall \boldsymbol{\xi}=\left(\xi_{i \alpha}\right)_{1 \leq i, \alpha \leq n} \in \mathbb{R}^{n \times n} \\
& \text { s.t. } \boldsymbol{\xi}=\boldsymbol{\xi}^{\top} \text { and } \sum_{i=1}^{n} \xi_{i i}=0, \tag{14}
\end{align*}
$$

where $|\boldsymbol{\xi}|^{2}=\xi_{i \alpha} \xi_{i \alpha}$.
(A3) The parameter η satisfies:

$$
\begin{equation*}
\langle\eta \mathbf{w}, \mathbf{w}\rangle_{\mathfrak{D}} \geq 0, \quad \forall \mathbf{w} \in H^{1}(\mathfrak{D})^{n} \tag{15}
\end{equation*}
$$

Dirichlet problem for the anisotropic Brinkman system

Mixed variational formulation
We introduce the bilinear forms:

$$
a_{\mathbb{A} ; \mathfrak{D}}: \dot{H}^{1}(\mathfrak{D})^{n} \times \dot{H}^{1}(\mathfrak{D})^{n} \rightarrow \mathbb{R}, \quad b_{\mathfrak{D}}: \dot{H}^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R} \rightarrow \mathbb{R}
$$

given by:

$$
\begin{align*}
a_{\mathbb{A} ; \mathfrak{D}}(\mathbf{u}, \mathbf{v})=\left\langle a_{i j}^{\alpha \beta} E_{j \beta}(\mathbf{u}), E_{i \alpha}(\mathbf{v})\right\rangle_{\mathfrak{D}}+\langle\eta \mathbf{u}, \mathbf{v}\rangle_{\mathfrak{D}}, & \forall \mathbf{u}, \mathbf{v} \in \dot{H}^{1}(\mathfrak{D})^{n} \tag{16}\\
b_{\mathfrak{D}}(\mathbf{v}, q)=-\langle\operatorname{div} \mathbf{v}, q\rangle_{\mathfrak{D}} & \forall q \in L^{2}(\mathfrak{D}) / \mathbb{R}
\end{align*}
$$

and state the following equivalence result:

Lemma

The Dirichlet problem (11) is equivalent to the following variational problem:

$$
\begin{cases}a_{\mathbb{A} ; \mathcal{D}}(\mathbf{u}, \mathbf{v})+b_{\mathfrak{D}}(\mathbf{v}, \pi)=-\langle\mathbf{f}, \mathbf{v}\rangle_{\mathfrak{D}} & , \tag{17}\\ b_{\mathfrak{D}}(\mathbf{u}, q)=0 & \forall \mathbf{v} \in \dot{H}^{1}(\mathfrak{D})^{n} \\ & \forall q \in L^{2}(\mathfrak{D}) / \mathbb{R}\end{cases}
$$

The proof follows similar arguments as the ones presented in Kohr et al. 2021 for the anisotropic Stokes system.

Dirichlet problem for the anisotropic Brinkman system

Well-posedness of the variational problem

The primary result used in the analysis of problem (17) is the following theorem:

Theorem (Babuška (1973), Brezzi (1974))

Let X and M be two Hilbert spaces and let

$$
a: X \times X \rightarrow \mathbb{R}, \quad b: X \times M \rightarrow \mathbb{R}
$$

be two bounded bilinear forms. Let $f \in X^{\prime}$ and $g \in M^{\prime}$. Denote by V the subspace of X defined as:

$$
\begin{equation*}
V=\{v \in X \mid b(v, q)=0, \forall q \in M\} \tag{18}
\end{equation*}
$$

Dirichlet problem for the anisotropic Brinkman system

Well-posedness of the variational problem

Theorem (cont.)

Assume that:
(1) The bilinear form a is coercive, i.e., there exists a constant $c_{a}>0$ such that:

$$
\begin{equation*}
a(u, u) \geq c_{a}\|u\|_{X}^{2}, \quad \forall u \in X \tag{19}
\end{equation*}
$$

(2) The bilinear form b satisfies the inf-sup (Babuška-Brezzi) condition:

$$
\begin{equation*}
\inf _{q \in M \backslash\{0\}} \sup _{v \in X \backslash\{0\}} \frac{b(v, q)}{\|v\|_{X}\|q\|_{M}} \geq c_{b} \tag{20}
\end{equation*}
$$

for some constant $c_{b}>0$.

Dirichlet problem for the anisotropic Brinkman system

Well-posedness of the variational problem

Theorem (cont.)

Then, for unknowns $(u, p) \in X \times M$, the mixed variational problem:

$$
\begin{cases}a(u, v)+b(v, p)=f(v), & \forall v \in V \tag{21}\\ b(u, q)=g(q), & \forall q \in M\end{cases}
$$

is well-posed, i.e., (21) has a unique solution $(u, p) \in X \times M$ and there exists a constant $C>0$ such that:

$$
\begin{equation*}
\|u\|_{X}+\|p\|_{M} \leq C\left(\|f\|_{X^{\prime}}+\|g\|_{M^{\prime}}\right) . \tag{22}
\end{equation*}
$$

Denote by $\check{H}_{\text {div }}^{1}(\mathfrak{D})^{n}$ the space:

$$
\check{H}_{\mathrm{div}}^{1}(\mathfrak{D})^{n}=\left\{\mathbf{w} \in \circ^{1}(\mathfrak{D})^{n} \mid \operatorname{div} \mathbf{w}=0\right\}
$$

Indeed, the bilinear forms $a_{\mathbb{A} ; \mathfrak{D}}$ and $b_{\mathfrak{D}}$ satisfy the requirements of the previous theorem (see, e.g., Kohr et al. 2021^{12}).

Lemma

- The bilinear form $a_{\mathbb{A} ; \mathfrak{D}}: \dot{H}^{1}(\mathfrak{D})^{n} \times \dot{H}^{1}(\mathfrak{D})^{n} \rightarrow \mathbb{R}$ is bounded, i.e., there exists a constant $c>0$ such that:

$$
\left|a_{\mathbb{A} ; \mathfrak{D}}(\mathbf{u}, \mathbf{v})\right| \leq c\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}\|\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}}, \quad \forall \mathbf{u}, \mathbf{v} \in \dot{H}^{1}(\mathfrak{D})^{n} .
$$

 constant $c_{a}>0$ such that:

$$
a_{\mathbb{A} ; \mathfrak{D}}(\mathbf{u}, \mathbf{u}) \geq c_{a}\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}^{2}, \quad \forall \mathbf{u} \in \check{H}_{\mathrm{div}}^{1}(\mathfrak{D})^{n} .
$$

- The bilinear form $b_{\mathfrak{D}}$ is bounded and satisfies the inf-sup condition:

$$
\inf _{q \in L^{2}(\mathfrak{D}) / \mathbb{R} \backslash\{0\}} \sup _{\mathbf{v} \in \dot{H}^{1}(\mathfrak{D})^{n} \backslash\{0\}} \frac{b_{\mathfrak{D}}(\mathbf{v}, q)}{\|\mathbf{v}\|_{\dot{H}^{1}(\mathfrak{D})^{n}}\|q\|_{L^{2}(\mathfrak{D}) / \mathbb{R}}} \geq c_{b}
$$

for some constant $c_{b}>0$.

[^6]
Dirichlet problem for the anisotropic Brinkman system

Well-posedness of the homogeneous Dirichlet problem

In view of the equivalence between the homogeneous Dirichlet problem (11) and the mixed variational problem (17) we state the following

Theorem

For any given $\mathbf{f} \in H^{-1}(\mathfrak{D})^{n}$ the Dirichlet problem (11) has a unique solution $(\mathbf{u}, \pi) \in \dot{H}^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}$. Furthermore, there exists a constant $C>0$ such that:

$$
\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}+\|\pi\|_{L^{2}(\mathfrak{D}) / \mathbb{R}} \leq C\|\mathbf{f}\|_{H^{-1}(\mathfrak{D})^{n}} .
$$

Dirichlet problem for the anisotropic Brinkman system

Well-posedness of the non-homogeneous Dirichlet problem
The previous result can be extended to the non-homogeneous Dirichlet problem (following a similar argument as in Kohr et al. 2022 ${ }^{13}$):

$$
\begin{cases}\mathcal{L} \mathbf{u}-\nabla \pi-\eta \mathbf{u}=\mathbf{f} & \text { in } \mathfrak{D} \tag{23}\\ \operatorname{div} \mathbf{u}=0 & \text { in } \mathfrak{D} \\ \gamma_{\mathfrak{D}} \mathbf{u}=\boldsymbol{\varphi} & \text { on } \partial \mathfrak{D}\end{cases}
$$

Theorem

For any given $(\mathbf{f}, \boldsymbol{\varphi}) \in H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}$, the Dirichlet problem (23) has a unique solution $(\mathbf{u}, \pi) \in H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}$. Furthermore, there exists a constant $C>0$ such that:

$$
\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}+\|\pi\|_{L^{2}(\mathfrak{D}) / \mathbb{R}} \leq C\left(\|\mathbf{f}\|_{H^{-1}(\mathfrak{D})^{n}}+\|\varphi\|_{H^{\frac{1}{2}}(\partial \mathfrak{D})^{n}}\right) .
$$

[^7]
Dirichlet problem for the anisotropic Brinkman system

Well-posedness of the non-homogeneous Dirichlet problem

Remark

The solution of the Dirichlet problem (23) can be represented as $(\mathbf{u}, \pi)=\mathcal{B}(\mathbf{f}, \varphi)$, where:

$$
\mathcal{B}: H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n} \rightarrow H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}
$$

$\mathcal{B}=\mathcal{B}_{\mathfrak{D}, \mathbb{A}, \eta}$ is a linear continuous operator.

Dirichlet problem for the anisotropic DFB system

We now return to the nonlinear case and study the following Dirichlet problem:

$$
\left\{\begin{array}{ll}
\mathcal{L} \mathbf{u}-\nabla \pi-\eta \mathbf{u}-\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}-\lambda|\mathbf{u}| \mathbf{u}=\mathbf{f} & \text { in } \mathfrak{D} \tag{24}\\
\operatorname{div} \mathbf{u}=0 & \text { in } \mathfrak{D} \\
\gamma_{\mathfrak{D}} \mathbf{u}=\varphi & \text { on } \partial \mathfrak{D}
\end{array},\right.
$$

where

$$
\begin{equation*}
\mathbf{f} \in H^{-1}(\mathfrak{D})^{n}, \quad \varphi \in H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n} \tag{25}
\end{equation*}
$$

are the given data. We assume that:
(A4) $\kappa, \lambda \in L^{\infty}(\mathfrak{D})^{n \times n}$ are matrix-valued parameters with non-negative entries and are endowed with the norms:

$$
\begin{equation*}
\|\kappa\|=\max _{1 \leq i, j \leq n}\left\|\kappa_{i j}\right\|_{L^{\infty}(\mathfrak{D})}, \quad\|\lambda\|=\max _{1 \leq i, j \leq n}\left\|\lambda_{i j}\right\|_{L^{\infty}(\mathfrak{D})} . \tag{26}
\end{equation*}
$$

Dirichlet problem for the anisotropic DFB system

To obtain norm estimates for the nonlinear terms in (24) we apply the Hölder inequality along with the following embedding result (consequence of the Sobolev embedding theorem for $n=2,3$):

Theorem

For any $r \in[2,6]$ we have the embedding $H^{1}(\mathfrak{D})^{n} \hookrightarrow L^{r}(\mathfrak{D})$ and there exists a constant c_{r} such that:

$$
\begin{equation*}
\|\mathbf{u}\|_{L^{r}(\mathfrak{D})^{n}} \leq c_{r}\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}, \quad \forall \mathbf{u} \in H^{1}(\mathfrak{D})^{n} . \tag{27}
\end{equation*}
$$

Dirichlet problem for the anisotropic DFB system

Norm estimates

We have the following norm estimates (see, e.g., Kohr et al. ${ }^{14,15}$):

Lemma

Let $\mathbf{u}, \mathbf{v} \in H^{1}(\mathfrak{D})^{n}$. Then:

$$
\begin{gather*}
\|(\mathbf{u} \cdot \nabla) \mathbf{v}\|_{H^{-1}(\mathfrak{D})^{n}} \leq c_{4}^{2}\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}\|\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}}, \tag{28}\\
\|(\mathbf{u} \cdot \nabla) \mathbf{u}-(\mathbf{v} \cdot \nabla) \mathbf{v}\|_{H^{-1}(\mathfrak{D})^{n}} \leq c_{4}^{2}\left(\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}+\|\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}}\right)\|\mathbf{u}-\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}} .
\end{gather*}
$$

Also:

$$
\begin{gather*}
\||\mathbf{u}| \mathbf{v}\|_{H^{-1}(\mathfrak{D})^{n}} \leq c_{2} c_{4}^{2}\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}\|\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}} \tag{30}\\
\|(|\mathbf{u}| \mathbf{u}-|\mathbf{v}| \mathbf{v})\|_{H^{-1}(\mathfrak{D})^{n}} \leq c_{2} c_{4}^{2}\left(\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}+\|\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}}\right)\|\mathbf{u}-\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}} \tag{31}
\end{gather*}
$$

[^8]
Dirichlet problem for the anisotropic DFB system

Let $\mathbf{u} \in H_{\mathrm{div}}^{1}(\mathfrak{D})^{n}$. By Theorem 7, the Dirichlet problem:

$$
\begin{cases}\mathcal{L} \mathbf{v}-\nabla p-\eta \mathbf{v}=\mathbf{f}+\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}+\lambda|\mathbf{u}| \mathbf{u} & \text { in } \mathfrak{D} \tag{32}\\ \operatorname{div} \mathbf{v}=0 & \text { in } \mathfrak{D} \\ \gamma_{\mathfrak{D}} \mathbf{v}=\varphi & \text { on } \partial \mathfrak{D}\end{cases}
$$

has a unique solution $(\mathbf{v}, p) \in H_{\text {div }}^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}$. Let

$$
\begin{equation*}
(\mathcal{U}, \mathcal{P}): H_{\mathrm{div}}^{1}(\mathfrak{D})^{n} \rightarrow H_{\mathrm{div}}^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R} \tag{33}
\end{equation*}
$$

be an operator that maps \mathbf{u} to the unique solution (\mathbf{v}, p) of (32), i.e.,

$$
\begin{equation*}
(\mathcal{U}(\mathbf{u}), \mathcal{P}(\mathbf{u}))=(\mathbf{v}, p)=\mathcal{B}(\mathbf{f}+\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}+\lambda|\mathbf{u}| \mathbf{u}, \boldsymbol{\varphi}) \tag{34}
\end{equation*}
$$

Dirichlet problem for the anisotropic DFB system

We can re-write (32) as:

$$
\left\{\begin{array}{ll}
\mathcal{L} \mathcal{U}(\mathbf{u})-\nabla \mathcal{P}(\mathbf{u})-\eta \mathcal{U}(\mathbf{u})=\mathbf{f}+\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}+\lambda|\mathbf{u}| \mathbf{u} & \text { in } \mathfrak{D} \tag{35}\\
\operatorname{div} \mathcal{U}(\mathbf{u})=0 & \text { in } \mathfrak{D} \\
\gamma_{\mathfrak{D}} \mathcal{U}(\mathbf{u})=\varphi & \text { on } \partial \mathfrak{D}
\end{array} .\right.
$$

Remark

Observe that if the operator \mathcal{U} has a fixed point, say $\mathbf{u}^{*}=\mathcal{U}\left(\mathbf{u}^{*}\right)$, then the pair

$$
\left(\mathcal{U}\left(\mathbf{u}^{*}\right), \mathcal{P}\left(\mathbf{u}^{*}\right)\right)=\left(\mathbf{u}^{*}, \mathcal{P}\left(\mathbf{u}^{*}\right)\right)
$$

is a solution of the nonlinear Dirichlet problem (24).

Dirichlet problem for the anisotropic DFB system

Since the operator \mathcal{B} is bounded, there exists a constant $c_{*}>0$ such that:

$$
\begin{align*}
\|\mathcal{U}(\mathbf{u}), \mathcal{P}(\mathbf{u})\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} & =\|\mathcal{B}(\mathbf{f}+\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}+\lambda|\mathbf{u}| \mathbf{u}, \varphi)\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} \\
& \leq c_{*}\|(\mathbf{f}+\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}+\lambda|\mathbf{u}| \mathbf{u}, \varphi)\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}} \tag{36}\\
& \leq c_{*}\|(\mathbf{f}, \varphi)\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}}+c_{*}\|\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}+\lambda|\mathbf{u}| \mathbf{u}\|_{H^{-1}(\mathfrak{D})^{n}}
\end{align*}
$$

Moreover:

$$
\begin{equation*}
\|\kappa(\mathbf{u} \cdot \nabla) \mathbf{u}+\lambda|\mathbf{u}| \mathbf{u}\|_{\boldsymbol{H}^{-1}(\mathfrak{D})^{n}} \leq n\left(\|\kappa\|\|(\mathbf{u} \cdot \nabla) \mathbf{u}\|_{H^{-1}(\mathfrak{D})^{n}}+\|\lambda\|\||\mathbf{u}| \mathbf{u}\|_{H^{-1}(\mathfrak{D})^{n}}\right) \tag{37}
\end{equation*}
$$

With the previously obtained norm estimates, we obtain:

$$
\begin{align*}
\|\mathcal{U}(\mathbf{u}), \mathcal{P}(\mathbf{u})\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} & \leq c_{*}\|(\mathbf{f}, \boldsymbol{\varphi})\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}}+c_{*} n\left(c_{4}^{2}\|\kappa\|\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}^{2}+c_{2} c_{4}^{2}\|\lambda\|\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}^{2}\right) \\
& \leq c_{*}\|(\mathbf{f}, \boldsymbol{\varphi})\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}}+c c_{*}\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}^{2}, \tag{38}
\end{align*}
$$

where $c=n\left(c_{4}^{2}\|\kappa\|+c_{2} c_{4}^{2}\|\lambda\|\right)$.

Dirichlet problem for the anisotropic DFB system

Existence and uniqueness result

Theorem

Let $\xi=\frac{3}{16 c c_{*}^{2}}$ and $\xi_{*}=\frac{1}{4 c c_{*}}$. Assuming that:

$$
\begin{equation*}
\|(\mathbf{f}, \boldsymbol{\varphi})\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}} \leq \xi_{*}, \tag{39}
\end{equation*}
$$

the Dirichlet problem (24) has a unique solution

$$
(\mathbf{u}, \pi) \in H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R} \text { s.t. }\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}} \leq \xi
$$

Moreover, there exists a constant $C>0$ such that:

$$
\begin{equation*}
\|(\mathbf{u}, \pi)\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} \leq C\|(\mathbf{f}, \varphi)\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}} \tag{40}
\end{equation*}
$$

Proof

Let \mathbf{B}_{ξ} be the closed ball in $H_{\text {div }}^{1}(\mathfrak{D})^{n}$ of radius η centered at 0 :

$$
\mathbf{B}_{\xi}=\left\{\mathbf{v} \in H_{\operatorname{div}}^{1}(\mathfrak{D})^{n} \mid\|\mathbf{v}\|_{H^{1}(\Omega)^{n}} \leq \xi\right\} .
$$

We will show that the operator $\mathcal{U}: \mathbf{B}_{\xi} \rightarrow \mathbf{B}_{\xi}$ has a unique fixed point. First, let $\mathbf{u} \in \mathbf{B}_{\eta}$ be arbitrary. Then:

$$
\|\mathcal{U}(\mathbf{u}), \mathcal{P}(\mathbf{u})\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} \leq \frac{1}{4 c C_{*}}=\xi
$$

hence $\mathcal{U}: \mathbf{B}_{\xi} \rightarrow \mathbf{B}_{\xi}$ is well-defined, i.e., \mathcal{U} maps the ball \mathbf{B}_{ξ} to itself.
Next, for any $\mathbf{u}, \mathbf{v} \in \mathbf{B}_{\xi}$ we have:

$$
\begin{equation*}
\|\mathcal{U}(\mathbf{u})-\mathcal{U}(\mathbf{v})\|_{H^{1}(\mathfrak{D})^{n}} \leq c_{*}\|\kappa((\mathbf{u} \cdot \nabla) \mathbf{u}-(\mathbf{v} \cdot \nabla) \mathbf{v})+\lambda(|\mathbf{u}| \mathbf{u}-|\mathbf{v}| \mathbf{v})\|_{H^{-1}(\mathfrak{D})^{n}} \tag{41}
\end{equation*}
$$

Proof

According to the previously obtained norm estimates:

$$
\begin{align*}
\|\mathcal{U}(\mathbf{u})-\mathcal{U}(\mathbf{v})\|_{H^{1}(\mathfrak{D})^{n}} & \leq c_{*} n\left[\|\kappa\|\|(\mathbf{u} \cdot \nabla) \mathbf{u}-(\mathbf{v} \cdot \nabla) \mathbf{v}\|_{H^{-1}(\mathfrak{D})^{n}}+\|\lambda\|\| \| \mathbf{u}\left|\mathbf{u}-|\mathbf{v}| \mathbf{v} \|_{H^{-1}(\mathfrak{D})^{n}}\right]\right. \\
& \leq c_{*} n\left(c_{4}^{2}\|\kappa\|+c_{2} c_{4}^{2}\|\alpha\|\right)\left(\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{n}}+\|\mathbf{v}\|_{H^{1}(\Omega)^{n}}\right)\|\mathbf{u}-\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}} \tag{41}
\end{align*}
$$

which leads to:

$$
\begin{equation*}
\|\mathcal{U}(\mathbf{u})-\mathcal{U}(\mathbf{v})\|_{H^{1}(\mathfrak{D})^{n}} \leq 2 \xi c c_{*}\|\mathbf{u}-\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}}=\frac{1}{2}\|\mathbf{u}-\mathbf{v}\|_{H^{1}(\mathfrak{D})^{n}}, \tag{42}
\end{equation*}
$$

which means that the operator $\mathcal{U}: \mathbf{B}_{\xi} \rightarrow \mathbf{B}_{\xi}$ is a contraction.
In view of the Banach contraction principle, there exists a unique fixed point $\mathbf{u}^{*} \in \mathbf{B}_{\xi}$ of \mathcal{U}.

Proof

Let $\pi^{*}=\mathcal{P}\left(\mathbf{u}^{*}\right)$. Since $\mathbf{u}^{*} \in \mathbf{B}_{\xi}$, i.e., $\left\|\mathbf{u}^{*}\right\|_{H^{1}(\mathfrak{D})^{n}} \leq \xi=\frac{1}{4 c c_{*}}$, we have:

$$
\begin{equation*}
\left\|\left(\mathbf{u}^{*}, \pi^{*}\right)\right\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} \leq c_{*}\|(\mathbf{f}, \boldsymbol{\varphi})\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}}+\frac{1}{4}\left\|\mathbf{u}^{*}\right\|_{H^{1}(\mathfrak{D})^{n}}, \tag{41}
\end{equation*}
$$

hence:

$$
\begin{equation*}
\left\|\mathbf{u}^{*}\right\|_{H^{1}(\mathfrak{D})^{n}}+\frac{4}{3}\left\|\pi^{*}\right\|_{L^{2}(\mathfrak{D}) / \mathbb{R}} \leq \frac{4 C_{*}}{3}\|(\mathbf{f}, \boldsymbol{\varphi})\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}} . \tag{42}
\end{equation*}
$$

Finally:

$$
\begin{equation*}
\left\|\left(\mathbf{u}^{*}, \pi^{*}\right)\right\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} \leq\left\|\mathbf{u}^{*}\right\|_{H^{1}(\mathfrak{D})^{n}}+\frac{4}{3}\left\|\pi^{*}\right\|_{L^{2}(\mathfrak{D}) / \mathbb{R}} \leq \frac{4 c_{*}}{3}\|(\mathbf{f}, \boldsymbol{\varphi})\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}} . \tag{43}
\end{equation*}
$$

Dirichlet problem for coupled anisotropic DFB equations

We consider the Dirichlet problem for a system of two coupled anisotropic DFB equations:

$$
\begin{cases}\mathcal{L}_{1} \mathbf{u}_{1}-\nabla \pi_{1}-\eta_{1} \mathbf{u}_{1}-\kappa_{1}\left(\mathbf{u}_{1} \cdot \nabla\right) \mathbf{u}_{1}-\lambda_{1}\left|\mathbf{u}_{1}\right| \mathbf{u}_{1}=\mathbf{f}_{1}+F_{1}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) & \text { in } \mathfrak{D} \tag{44}\\ \mathcal{L}_{2} \mathbf{u}_{2}-\nabla \pi_{2}-\eta_{2} \mathbf{u}_{2}-\kappa_{2}\left(\mathbf{u}_{2} \cdot \nabla\right) \mathbf{u}_{2}-\lambda_{2}\left|\mathbf{u}_{2}\right| \mathbf{u}_{2}=\mathbf{f}_{2}+F_{2}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) & \text { in } \mathfrak{D} \\ \operatorname{div} \mathbf{u}_{1}=0, \quad \operatorname{div} \mathbf{u}_{2}=0 & \text { in } \mathfrak{D} \\ \gamma_{\mathfrak{D}} \mathbf{u}_{1}=\boldsymbol{\varphi}_{1}, \quad \gamma_{\mathfrak{D}} \mathbf{u}_{2}=\varphi_{2} & \text { on } \partial \mathfrak{D}\end{cases}
$$

where:

$$
\begin{equation*}
\mathbf{f}=\left(\mathbf{f}_{1}, \mathbf{f}_{2}\right) \in H^{-1}(\mathfrak{D})^{2 n}, \quad \varphi=\left(\varphi_{1}, \varphi_{2}\right) \in H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{2 n} \tag{45}
\end{equation*}
$$

are the given data, and:

$$
\begin{equation*}
\mathbf{F}=\left(\mathbf{F}_{1}, \mathbf{F}_{2}\right), \quad \mathbf{F}_{i}: H^{1}(\mathfrak{D})^{2 n} \rightarrow H^{-1}(\mathfrak{D})^{n}, \quad i=\overline{1,2} . \tag{46}
\end{equation*}
$$

Dirichlet problem for coupled anisotropic DFB equations

We assume that:
(A5) The mapping \mathbf{F} satisfies:

$$
\begin{equation*}
\mathbf{F}_{i}(0)=0, \quad i=\overline{1,2} . \tag{47}
\end{equation*}
$$

In particular, for modeling flow in bidisperse porous media, we are interested in \mathbf{F} of the form:

$$
\begin{align*}
& \mathbf{F}_{1}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\gamma_{1}\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right) \tag{48}\\
& \mathbf{F}_{2}\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)=\gamma_{2}\left(\mathbf{u}_{2}-\mathbf{u}_{1}\right)
\end{align*}, \quad \forall \mathbf{u}_{1}, \mathbf{u}_{2} \in H_{\mathrm{div}}^{1}(\mathfrak{D})^{n} .
$$

for some parameters $\gamma_{1}, \gamma_{2} \in L^{\infty}(\mathfrak{D})^{n \times n}$ with non-negative entries.

Dirichlet problem for coupled anisotropic DFB equations

Vector-valued metrics and the Perov fixed point theorem

Let (X, d) be a metric space. We introduce the following vector-valued metric on the product space $X^{k}=\underbrace{X \times X \times \cdots \times X}_{k \text { times }}\left(\right.$ see Precup ${ }^{16}$, also Petrușel et al. $\left.{ }^{17}\right)$:

$$
D: X^{k} \rightarrow[0, \infty)^{k}, \quad D(x, y)=\left(\begin{array}{c}
d\left(x_{1}, y_{1}\right) \tag{49}\\
d\left(x_{2}, y_{2}\right) \\
\vdots \\
d\left(x_{k}, y_{k}\right)
\end{array}\right), \quad \begin{aligned}
& x=\left(x_{1}, \ldots, x_{k}\right) \\
& y=\left(y_{1}, \ldots, y_{k}\right)
\end{aligned} \in X^{k}
$$

We refer to the space $\left(X^{k}, D\right)$ as a generalized metric space.

[^9]
Dirichlet problem for coupled anisotropic DFB equations

Let $\left(X, d_{X}\right),\left(Y, d_{Y}\right)$ be metric spaces and $F: X^{k} \rightarrow Y^{k}$.

Definition

We say that F is a generalized Lipschitz mapping if there exists a matrix $M \in \mathbb{R}^{k \times k}$ with non-negative entries such that:

$$
\begin{equation*}
D_{Y^{k}}(F(x), F(y)) \leq M D_{X^{k}}(x, y), \quad \forall^{x}=\left(x_{1}, \ldots, x_{k}\right), ~ \in X^{k} . \tag{50}
\end{equation*}
$$

Definition

If $X \equiv Y$, we say that F ia a generalized contraction if the matrix M is convergent to zero, i.e.,

$$
\lim _{p \rightarrow \infty} M^{p}=0
$$

Dirichlet problem for coupled anisotropic DFB equations

Vector-valued metrics and the Perov fixed point theorem

Regarding matrices that are convergent to zero we state the following characterization result (see, e.g., Precup 2009):

Lemma

Let $M \in \mathbb{R}^{k \times k}$ be a matrix with non-negative entries. The following statements are equivalent:

- M is convergent to zero
- I-M is non-singular and $(I-M)^{-1}$ has non-negative elements
- $|\lambda|<1$ for every $\lambda \in \mathbb{C}$ with $\operatorname{det}\left(M-\lambda I_{k}\right)=0$

Dirichlet problem for coupled anisotropic DFB equations

Vector-valued metrics and the Perov fixed point theorem

The following theorem generalizes the Banach contraction principle to the setting of generalized metric spaces ${ }^{18}$:

Theorem (Perov, 1966)

Let (X, d) be a complete metric space and $F: X^{k} \rightarrow X^{k}$ be a generalized contraction. Then, there exists a unique fixed point $x^{*} \in X^{k}$ of F.

In particular, if $\left(X,\|\cdot\|_{X}\right)$ is a normed space, we consider the following vector-valued norm on X^{k} :

$$
\left\|\left|\cdot\left\|\mid: X^{k} \rightarrow[0, \infty)^{k}, \quad\right\|\|x\|_{X^{k}}=\left(\begin{array}{c}
\left\|x_{1}\right\|_{x} \tag{51}\\
\left\|x_{2}\right\|_{X} \\
\vdots \\
\left\|x_{k}\right\|_{X}
\end{array}\right), \quad \forall x=\left(x_{1}, \ldots, x_{k}\right) \in X^{k}\right.\right.
$$

[^10]
Dirichlet problem for coupled anisotropic DFB equations

Returning to the study of the Dirichlet problem (44), we assume that:
(A6) The mapping \mathbf{F} satisfies the following Lipschitz condition:

$$
\begin{equation*}
\|\mathbf{F}(\mathbf{u})-\mathbf{F}(\mathbf{v})\|_{H^{-1}(\mathfrak{D})^{2 n}} \leq A\|\mathbf{u}-\mathbf{v}\|_{H_{\mathrm{div}}^{1}(\mathfrak{D})^{2 n}} \tag{52}
\end{equation*}
$$

for some matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq 2} \in \mathbb{R}^{2 \times 2}$ with non-negative entries.

Immediately, for any $\mathbf{u}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \in H^{1}(\mathfrak{D})^{2 n}$ we deduce the following bound for \mathbf{F} :

$$
\begin{equation*}
\|\mathbf{F}(\mathbf{u})\|_{H^{-1}(\mathfrak{D})^{2 n}}=\|\mathbf{F}(\mathbf{u})-\mathbf{F}(0)\|\left\|_{H^{-1}(\mathfrak{D})^{2 n}} \leq A\right\| \mathbf{u} \|_{H^{1}(\mathfrak{D})^{2 n}} . \tag{53}
\end{equation*}
$$

Dirichlet problem for coupled anisotropic DFB equations

Let $\mathbf{u}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \in H_{\text {div }}^{1}(\mathfrak{D})^{2 n}$ be arbitrary. By Theorem 7, each of the following Dirichlet problems ($i=\overline{1,2}$):

$$
\left(D_{i}\right) \begin{cases}\mathcal{L}_{i} \mathbf{v}_{i}-\nabla p_{i}-\eta_{i} \mathbf{v}_{i}=\mathbf{f}_{i}+\mathbf{F}_{i}(\mathbf{u})+\kappa_{i}\left(\mathbf{u}_{i} \cdot \nabla\right) \mathbf{u}_{i}+\lambda_{i}\left|\mathbf{u}_{i}\right| \mathbf{u}_{i} & \text { in } \mathfrak{D} \tag{54}\\ \operatorname{div} \mathbf{v}_{i}=0 & \text { in } \mathfrak{D} \\ \gamma_{\mathfrak{D}} \mathbf{v}_{i}=\boldsymbol{\varphi}_{i} & \text { on } \partial \mathfrak{D}\end{cases}
$$

has a unique solution $\left(\mathbf{v}_{i}, p_{i}\right) \in H_{\text {div }}^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}$. Let

$$
\left(\mathcal{U}_{i}, \mathcal{P}_{i}\right): H_{\mathrm{div}}^{1}(\Omega)^{2 n} \rightarrow H_{\mathrm{div}}^{1}(\Omega)^{n} \times L^{2}(\Omega) / \mathbb{R}
$$

be operators that map \mathbf{u} to the unique solution $\left(\mathbf{v}_{i}, p_{i}\right)$ of the Dirichlet problem D_{i} :

$$
\begin{equation*}
\left(\mathcal{U}_{i}(\mathbf{u}), \mathcal{P}_{i}(\mathbf{u})\right)=\left(\mathbf{v}_{i}, p_{i}\right)=\mathcal{B}_{i}\left(\mathbf{f}_{i}+\mathbf{F}_{i}(\mathbf{u})+\kappa_{i}\left(\mathbf{u}_{i} \cdot \nabla\right) \mathbf{u}_{i}+\lambda_{i}\left|\mathbf{u}_{i}\right| \mathbf{u}_{i}, \boldsymbol{\varphi}_{i}\right) . \tag{55}
\end{equation*}
$$

Dirichlet problem for coupled anisotropic DFB equations

Hence, we can write D_{i} as:

$$
\begin{cases}\mathcal{L}_{i} \mathcal{U}_{i}(\mathbf{u})-\nabla \mathcal{P}_{i}(\mathbf{u})-\eta_{i} \mathcal{U}_{i}(\mathbf{u})=\mathbf{f}_{i}+\mathbf{F}_{i}(\mathbf{u})+\kappa_{i}\left(\mathbf{u}_{i} \cdot \nabla\right) \mathbf{u}_{i}+\lambda_{i}\left|\mathbf{u}_{i}\right| \mathbf{u}_{i} & \text { in } \mathfrak{D} \tag{56}\\ \operatorname{div} \mathcal{U}_{i}(\mathbf{u})=0 & \text { in } \mathfrak{D} \\ \gamma_{\mathfrak{D}} \mathcal{U}_{i}(\mathbf{u})=\boldsymbol{\varphi}_{i} & \text { on } \partial \mathfrak{D}\end{cases}
$$

Let

$$
\begin{equation*}
(\mathcal{U}, \mathcal{P}): H_{\mathrm{div}}^{1}(\mathfrak{D})^{2 n} \rightarrow H_{\mathrm{div}}^{1}(\mathfrak{D})^{2 n} \times\left(L^{2}(\mathfrak{D}) / \mathbb{R}\right)^{2} \tag{57}
\end{equation*}
$$

be operators defined as:

$$
\begin{align*}
\mathcal{U}(\mathbf{u}) & =\left(\mathcal{U}_{1}(\mathbf{u}), \mathcal{U}_{2}(\mathbf{u})\right)=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \tag{58}\\
\mathcal{P}(\mathbf{u}) & =\left(\mathcal{P}_{1}(\mathbf{u}), \mathcal{P}_{2}(\mathbf{u})\right)=\left(p_{1}, p_{2}\right)
\end{align*} \quad \forall \mathbf{u}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \in H_{\mathrm{div}}^{1}(\mathfrak{D})^{2 n}
$$

Remark

Observe that if the operator \mathcal{U} has a fixed point, say $\mathbf{u}^{*}=\left(\mathbf{u}_{1}^{*}, \mathbf{u}_{2}^{*}\right) \in H_{\text {div }}^{1}(\mathfrak{D})^{2 n}$ such that $\mathbf{u}^{*}=\mathcal{U}\left(\mathbf{u}^{*}\right)$, then

$$
\left(\mathcal{U}\left(\mathbf{u}^{*}\right), \mathcal{P}\left(\mathbf{u}^{*}\right)\right)=\left(\mathbf{u}^{*}, \mathcal{P}\left(\mathbf{u}^{*}\right)\right)=\left(\left(\mathbf{u}_{1}^{*}, \mathbf{u}_{2}^{*}\right),\left(\pi_{1}^{*}, \pi_{2}^{*}\right)\right)
$$

is a solution of the Dirichlet problem (44).

Dirichlet problem for coupled anisotropic DFB equations

According to previous results:

$$
\begin{aligned}
& \left\|\mathcal{U}_{i}(\mathbf{u}), \mathcal{P}_{i}(\mathbf{u})\right\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}}=\left\|\mathcal{B}_{i}\left(\mathbf{f}_{i}+\mathbf{F}_{i}(\mathbf{u})+\kappa_{i}\left(\mathbf{u}_{i} \cdot \nabla\right) \mathbf{u}_{i}+\lambda_{i}\left|\mathbf{u}_{i}\right| \mathbf{u}_{i}, \boldsymbol{\varphi}_{i}\right)\right\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} \\
& \quad \leq \boldsymbol{c}_{* i}\left(\left\|\left(\mathbf{f}_{i}, \boldsymbol{\varphi}_{i}\right)\right\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}}+\left\|\mathbf{F}_{i}(\mathbf{u})\right\|_{H^{-1}(\mathfrak{D})^{n}}+\left\|\kappa_{i}\left(\mathbf{u}_{i} \cdot \nabla\right) \mathbf{u}_{i}+\lambda_{i}\left|\mathbf{u}_{i}\right| \mathbf{u}_{i}\right\|_{H^{-1}(\mathfrak{D})^{n}}\right) \\
& \quad \leq c_{* i}\left(\left\|\left(\mathbf{f}_{i}, \boldsymbol{\varphi}_{i}\right)\right\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}}+\left\|\mathbf{F}_{i}(\mathbf{u})\right\|_{H^{-1}(\mathfrak{D})^{n}}\right)+c_{i} c_{* i}\left\|\mathbf{u}_{i}\right\|_{H^{1}(\mathfrak{D})^{n}}^{2}
\end{aligned}
$$

Denote:

$$
c=\max _{i=1,2}\left\{c_{i}\right\}, \quad c_{*}=\max _{i=1,2}\left\{c_{* i}\right\}
$$

Then, in view of the properties of \mathbf{F} :

$$
\begin{align*}
\left\|\mathcal{U}_{i}(\mathbf{u}), \mathcal{P}_{i}(\mathbf{u})\right\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} \leq & c_{*}\left\|\left(\mathbf{f}_{i}, \varphi_{i}\right)\right\|_{H^{-1}(\mathfrak{D})^{n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{n}}+c C_{*}\left\|\mathbf{u}_{i}\right\|_{H^{1}(\mathfrak{D})^{n}}^{2}+ \tag{59}\\
& c_{*}\left(a_{1 i}\left\|\mathbf{u}_{1}\right\|_{H^{1}(\mathfrak{D})^{n}}+a_{2 i}\left\|\mathbf{u}_{2}\right\|_{H^{1}(\mathfrak{D})^{n}}\right)
\end{align*}
$$

Dirichlet problem for coupled anisotropic DFB equations

Existence and uniqueness result

Theorem

Let $\xi=\frac{1}{4 c c_{*}}, \xi_{*}=\frac{1}{8 c c_{*}^{2}}$. Assume that:

$$
\begin{equation*}
\max _{1 \leq i, j \leq 2} a_{i j} \leq \frac{1}{8 c_{*}}, \quad\|(\mathbf{f}, \varphi)\|_{H^{-1}(\mathfrak{D})^{2 n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{2 n}} \leq \xi_{*} . \tag{60}
\end{equation*}
$$

Then, the Dirichlet problem (44) has a unique solution

$$
(\mathbf{u}, \pi) \in H^{1}(\mathfrak{D})^{2 n} \times\left(L^{2}(\mathfrak{D}) / \mathbb{R}\right)^{2} \text { s.t. }\|\mathbf{u}\|_{H^{1}(\mathfrak{D})^{2 n}} \leq \xi \text {. }
$$

Moreover, there exists a constant $C>0$ such that:

$$
\begin{equation*}
\|(\mathbf{u}, \pi)\|\left\|_{H^{1}(\mathfrak{D})^{2 n} \times\left(L^{2}(\mathfrak{D}) / \mathbb{R}\right)^{2}} \leq C\right\|(\mathbf{f}, \boldsymbol{\varphi}) \|_{H^{-1}(\mathfrak{D})^{2 n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{2 n}} . \tag{61}
\end{equation*}
$$

Dirichlet problem for coupled anisotropic DFB equations

Existence and uniqueness result

Proof

Let \mathbf{B}_{ξ} be the closed ball in $H^{1}(\mathfrak{D})^{2 n}$ of radius ξ centered at 0 :

$$
\begin{equation*}
\mathbf{B}_{\xi}=\left\{\mathbf{v} \in H^{1}(\mathfrak{D})^{2 n} \mid\|\mathbf{v}\|_{H^{1}(\mathfrak{D})^{2 n}} \leq \xi\right\} . \tag{62}
\end{equation*}
$$

We will show that the operator $\mathcal{U}: \mathbf{B}_{\xi} \rightarrow \mathbf{B}_{\xi}$ has a unique fixed point $\mathbf{u}^{*} \in \mathbf{B}_{\xi}$. Let $\mathbf{u}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right) \in \mathbf{B}_{\xi}$ be arbitrary. Then, for $i=\overline{1,2}$, we have:

$$
\begin{equation*}
\left\|\mathcal{U}_{i}(\mathbf{u}), \mathcal{P}_{i}(\mathbf{u})\right\|_{H^{1}(\mathfrak{D})^{n} \times L^{2}(\mathfrak{D}) / \mathbb{R}} \leq c_{*} \xi_{*}+c c_{*} \xi^{2}+c_{*} \xi\left(a_{1 i}+a_{2 i}\right)=\frac{1}{4 c c_{*}}=\xi \tag{63}
\end{equation*}
$$

therefore the operator $\mathcal{U}: \mathbf{B}_{\xi} \rightarrow \mathbf{B}_{\xi}$ is well-defined.

Dirichlet problem for coupled anisotropic DFB equations

Existence and uniqueness result

Proof

Moreover, for any $\mathbf{u}=\left(\mathbf{u}_{1}, \mathbf{u}_{2}\right)$ and $\mathbf{v}=\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right) \in H^{1}(\mathfrak{D})^{2 n}$ we have $(i=\overline{1,2})$:

$$
\begin{aligned}
\left\|\mathcal{U}_{i}(\mathbf{u})-\mathcal{U}_{i}(\mathbf{v})\right\|_{H^{1}(\mathfrak{D})^{n}} \leq & c_{* i}\left\|\kappa_{i}\left(\left(\mathbf{u}_{i} \cdot \nabla\right) \mathbf{u}_{i}-\left(\mathbf{v}_{i} \cdot \nabla\right) \mathbf{v}_{i}\right)+\lambda_{i}\left(\left|\mathbf{u}_{i}\right| \mathbf{u}_{i}-\left|\mathbf{v}_{i}\right| \mathbf{v}_{i}\right)\right\|_{H^{-1}(\mathfrak{D})^{n}}+ \\
& c_{* i}\left\|\mathbf{F}_{i}(\mathbf{u})-\mathbf{F}_{i}(\mathbf{v})\right\|_{H^{-1}(\mathfrak{D})^{n}},
\end{aligned}
$$

which, taking into account the assumptions on \mathbf{F}, becomes:

$$
\begin{align*}
\left\|\mathcal{U}_{i}(\mathbf{u})-\mathcal{U}_{i}(\mathbf{v})\right\|_{H^{1}(\mathfrak{D})^{n}} & \leq 2 \xi c c_{*}\left\|\mathbf{u}_{i}-\mathbf{v}_{i}\right\|+c_{*}\left(a_{1 i}\left\|\mathbf{u}_{1}-\mathbf{v}_{1}\right\|+a_{2 i}\left\|\mathbf{u}_{2}-\mathbf{v}_{2}\right\|\right) \\
& \leq \frac{1}{2}\left\|\mathbf{u}_{i}-\mathbf{v}_{i}\right\|+\frac{1}{8}\left(\left\|\mathbf{u}_{1}-\mathbf{v}_{1}\right\|+\left\|\mathbf{u}_{2}-\mathbf{v}_{2}\right\|\right) \tag{62}
\end{align*}
$$

hence:

$$
\binom{\left\|\mathcal{U}_{1}(\mathbf{u})-\mathcal{U}_{1}(\mathbf{v})\right\|_{H^{1}(\mathfrak{D})^{n}}}{\left\|\mathcal{U}_{2}(\mathbf{u})-\mathcal{U}_{2}(\mathbf{v})\right\|_{H^{1}(\mathfrak{D})^{n}}} \leq\left(\begin{array}{cc}
\frac{5}{8} & \frac{1}{8} \tag{63}\\
\frac{1}{8} & \frac{5}{8}
\end{array}\right)\binom{\left\|\mathbf{u}_{1}-\mathbf{v}_{1}\right\|_{H^{1}(\mathfrak{D})^{n}}}{\left\|\mathbf{u}_{2}-\mathbf{v}_{2}\right\|_{H^{1}(\mathfrak{D})^{n}}}
$$

Dirichlet problem for coupled anisotropic DFB equations

Existence and uniqueness result

Proof

Let $M=\left(\begin{array}{cc}\frac{5}{8} & \frac{1}{8} \\ \frac{1}{8} & \frac{5}{8}\end{array}\right) \in \mathbb{R}^{2 \times 2}$. We can write the previous inequality as:

$$
\begin{equation*}
\|\mathcal{U}(\mathbf{u})-\mathcal{U}(\mathbf{v})\|_{H^{1}(\mathfrak{D})^{2 n}} \leq M\|\mathbf{u}-\mathbf{v}\|_{H^{1}(\mathfrak{D})^{2 n}} \tag{62}
\end{equation*}
$$

Since the matrix $I_{2}-M$ is non-singular and its inverse

$$
\left(I_{2}-M\right)^{-1}=\left(\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right)
$$

has non-negative entries, it follows that the matrix M is convergent to zero. In view of the Perov fixed point theorem, there exists a unique fixed point $\mathbf{u}^{*} \in \mathbf{B}_{\xi}$ of \mathcal{U}.

Dirichlet problem for coupled anisotropic DFB equations

Existence and uniqueness result

Proof

Let $\pi^{*}=\mathcal{P}\left(\mathbf{u}^{*}\right)$. Since $\mathbf{u}^{*} \in \mathbf{B}_{\xi}$, i.e., $\left\|\left\|\mathbf{u}^{*} \mid\right\|_{H^{1}(\mathfrak{D})^{2 n}} \leq \xi=\frac{1}{4 c c_{*}}\right.$, we have:

$$
\left\|\left(\mathbf{u}^{*}, \pi^{*}\right)\right\|_{H^{1}(\mathfrak{D})^{2 n} \times\left(L^{2}(\mathfrak{D}) / \mathbb{R}\right)^{2}} \leq c_{*}\| \|(\mathbf{f}, \boldsymbol{\varphi})\left\|_{H^{-1}(\mathfrak{D})^{2 n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{2 n}}+\frac{1}{2}\right\| \mathbf{u}^{*} \|_{H^{1}(\mathfrak{D})^{2 n}}
$$

hence:

$$
\left\|\mathbf{u}^{*}\right\|\left\|_{H^{1}(\mathfrak{D})^{2 n}}+2\right\|\left\|\pi^{*}\right\|_{\left(L^{2}(\mathfrak{D}) / \mathbb{R}\right)^{2}} \leq 2 c^{*}\|(\mathbf{f}, \boldsymbol{\varphi})\|_{H^{-1}(\mathfrak{D})^{2 n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{2 n}}
$$

Finally:

$$
\left\|\left(\mathbf{u}^{*}, \pi^{*}\right)\right\|_{H^{1}(\mathfrak{D})^{2 n \times\left(L^{2}(\mathfrak{D}) / \mathbb{R}\right)^{2}}} \leq\left\|\mathbf{u}^{*}\right\|_{H^{1}(\mathfrak{D})^{2 n}}+2\left\|\pi^{*}\right\|\left\|_{\left(L^{2}(\mathfrak{D}) / \mathbb{R}\right)^{2}} \leq 2 c^{*}\right\|(\mathbf{f}, \varphi) \|_{H^{-1}(\mathfrak{D})^{2 n} \times H_{\nu}^{\frac{1}{2}}(\partial \mathfrak{D})^{2 n}}
$$

The lid-driven cavity flow problem

We study numerically the flow of viscous incompressible a fluid in a square cavity of length L filled with a monodisperse/bidisperse porous medium.
Let $\mathbf{u}(x, y)=(u(x, y), v(x, y))$ be the velocity field and $\pi(x, y)$ be the pressure field.

Figure: The geometry of the flow domain and boundary conditions

The lid-driven cavity flow problem

Monodisperse porous medium case: mathematical model

The model governing the steady state of the flow is given by the following DFB system $\left({ }^{19,20}\right)$:

$$
\left\{\begin{array}{l}
\mu\left(\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}\right)-\varphi \frac{\partial \pi}{\partial x}-\frac{\mu \varphi}{K} u-\frac{\rho}{\varphi}\left(u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}\right)-\varphi c u \sqrt{u^{2}+v^{2}}=0 \\
\mu\left(\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}\right)-\varphi \frac{\partial \pi}{\partial y}-\frac{\mu \varphi}{K} v-\frac{\rho}{\varphi}\left(u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}\right)-\varphi c v \sqrt{u^{2}+v^{2}}=0 \tag{62}\\
\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0
\end{array}\right.
$$

where:

- ρ and μ is the density and viscosity of the fluid
- φ and K are the porosity and permeability of the porous medium
- c is an empirical coefficient: $c=\frac{1.75 \rho}{\sqrt{150 \varphi K}}$.

[^11]
The lid-driven cavity flow problem

We introduce the dimensionless variables:

$$
\begin{equation*}
X=\frac{x}{L}, \quad Y=\frac{y}{L}, \quad U=\frac{u}{U_{0}}, \quad V=\frac{v}{U_{0}}, \quad \Pi=\frac{\pi}{\rho U_{0}^{2}} \tag{63}
\end{equation*}
$$

and we denote:

$$
\begin{equation*}
\eta=\frac{\varphi}{\mathrm{Da}}, \quad \kappa=\frac{\mathrm{Re}}{\varphi}, \quad \lambda=\varphi \mathrm{CRe}, \quad C=\frac{1.75}{\sqrt{150 \varphi \mathrm{Da}}}, \quad P=\varphi \operatorname{Re} \Pi \tag{64}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{Re}=\frac{U_{0} L \rho}{\mu}, \quad \mathrm{Da}=\frac{K}{L^{2}} \tag{65}
\end{equation*}
$$

are the Reynolds number and Darcy number.

The lid-driven cavity flow problem

We obtain the following non-dimensional form of the DFB system (62):

$$
\left\{\begin{array}{l}
\frac{\partial^{2} U}{\partial X^{2}}+\frac{\partial^{2} U}{\partial Y^{2}}-\frac{\partial P}{\partial X}-\eta U-\kappa\left(U \frac{\partial U}{\partial X}+V \frac{\partial U}{\partial Y}\right)-\lambda U \sqrt{U^{2}+V^{2}}=0 \tag{66}\\
\frac{\partial^{2} V}{\partial X^{2}}+\frac{\partial^{2} V}{\partial Y^{2}}-\frac{\partial P}{\partial Y}-\eta V-\kappa\left(U \frac{\partial V}{\partial X}+V \frac{\partial V}{\partial Y}\right)-\lambda V \sqrt{U^{2}+V^{2}}=0 \\
\frac{\partial U}{\partial X}+\frac{\partial V}{\partial Y}=0
\end{array}\right.
$$

Remark

In particular, by lifting the porous medium assumption (letting $\varphi=1$ and $\mathrm{Da} \rightarrow \infty$, which yields $\eta=\lambda=0, \kappa=$ Re), we obtain the Navier-Stokes system.

The lid-driven cavity flow problem

We introduce the streamfunction Ψ defined by:

$$
\begin{equation*}
\frac{\partial \Psi}{\partial Y}=U, \quad \frac{\partial \Psi}{\partial X}=-V \tag{67}
\end{equation*}
$$

and the vorticity field:

$$
\begin{equation*}
\Omega=\frac{\partial V}{\partial X}-\frac{\partial U}{\partial Y} \tag{68}
\end{equation*}
$$

By substituting (67) in (68) we obtain the following relationship between Ψ and Ω :

$$
\begin{equation*}
\frac{\partial^{2} \Psi}{\partial X^{2}}+\frac{\partial^{2} \psi}{\partial Y^{2}}=-\Omega \tag{69}
\end{equation*}
$$

The lid-driven cavity flow problem

By differentiating the first relation in (66) with respect to Y, the second one with respect to X, subtracting, and coupling with (69), we obtain the streamfunction-vorticity formulation of the system (66) (cf. Gutt and Groșan 2015):

$$
\left\{\begin{array}{l}
\frac{\partial^{2} \Omega}{\partial X^{2}}+\frac{\partial^{2} \Omega}{\partial Y^{2}}-\eta \Omega-\kappa\left(\frac{\partial \Psi}{\partial Y} \frac{\partial \Omega}{\partial X}-\frac{\partial \Psi}{\partial X} \frac{\partial \Omega}{\partial Y}\right)+ \\
\quad \frac{\lambda}{\sqrt{\left(\frac{\partial \Psi}{\partial X}\right)^{2}+\left(\frac{\partial \Psi}{\partial Y}\right)^{2}}}\left\{\frac{\partial^{2} \Psi}{\partial X^{2}}\left[\left(\frac{\partial \Psi}{\partial Y}\right)^{2}+2\left(\frac{\partial \Psi}{\partial X}\right)^{2}\right]+\frac{\partial^{2} \Psi}{\partial Y^{2}}\left[\left(\frac{\partial \Psi}{\partial X}\right)^{2}+2\left(\frac{\partial \Psi}{\partial Y}\right)^{2}\right]+2 \frac{\partial \Psi}{\partial X} \frac{\partial \Psi}{\partial Y} \frac{\partial^{2} \Psi}{\partial X \partial Y}\right\}=0 \\
\frac{\partial^{2} \Psi}{\partial X^{2}}+\frac{\partial^{2} \Psi}{\partial Y^{2}}+\Omega=0 \tag{70}
\end{array}\right.
$$

The lid-driven cavity flow problem

Monodisperse porous medium case: numerical method
We discretize the system (70) using central finite differences on an $N \times N$ equidistant grid ($N=201$) and solve the resulting nonlinear algebraic system using a Gauss-Seidel iteration.

Figure: Convergence of G-S iteration for different Re

The lid-driven cavity flow problem

Numerical results for the Navier-Stokes system
To validate the numerical method, we consider the classical (non-porous) lid-driven cavity flow problem. In this case, the flow is modeled by the system (66) with $\varphi=1$ and $\mathrm{Da} \rightarrow \infty$, i.e., the Navier-Stokes system.

(a) $\operatorname{Re}=10$

(b) $\operatorname{Re}=100$

(c) $\operatorname{Re}=1000$

Figure: Velocity magnitude and streamlines at different Reynolds numbers

We compare the velocity through the geometric center of the cavity with the values provided $\mathrm{in}^{21,22}$:

[^12]
The lid-driven cavity flow problem

Porous cavity: variation of Reynolds number

We set $\mathrm{Da}=0.25, \varphi=0.2$ and consider $\mathrm{Re}=10,100,1000$:

Figure: Velocity magnitude and streamlines at different Reynolds numbers

The lid-driven cavity flow problem

Porous cavity: variation of the Darcy number

We set $\operatorname{Re}=100, \varphi=0.2$ and consider $\mathrm{Da}=0.25,0.0025,0.00025$:

Figure: Velocity magnitude and streamlines at different Darcy numbers

The lid-driven cavity flow problem

Bidisperse porous medium case: mathematical model

We now consider the case of a cavity filled with a bidisperse porous medium. The steady state of the flow is governed by the following coupled DFB equations:

$$
\left\{\begin{array}{l}
\mu\left(\frac{\partial^{2} u_{f}}{\partial x^{2}}+\frac{\partial^{2} u_{f}}{\partial y^{2}}\right)-\varphi_{f} \frac{\partial \pi}{\partial x}-\frac{\mu \varphi_{f}}{K_{f}} u_{f}-\frac{\rho}{\varphi_{f}}\left(u_{f} \frac{\partial u_{f}}{\partial x}+v_{f} \frac{\partial u_{f}}{\partial y}\right)-\varphi_{f} c_{f} u_{f} \sqrt{u_{f}^{2}+v_{f}^{2}}-\varphi_{f} \zeta\left(u_{f}-u_{p}\right)=0 \\
\mu\left(\frac{\partial^{2} v_{f}}{\partial x^{2}}+\frac{\partial^{2} v_{f}}{\partial y^{2}}\right)-\varphi_{f} \frac{\partial \pi}{\partial y}-\frac{\mu \varphi_{f}}{K_{f}} v_{f}-\frac{\rho}{\varphi_{f}}\left(u_{f} \frac{\partial v_{f}}{\partial x}+v_{f} \frac{\partial v_{f}}{\partial y}\right)-\varphi_{f} c_{f} u_{f} \sqrt{u_{f}^{2}+v_{f}^{2}}-\varphi_{f} \zeta\left(v_{f}-v_{p}\right)=0 \\
\mu\left(\frac{\partial^{2} u_{p}}{\partial x^{2}}+\frac{\partial^{2} u_{p}}{\partial y^{2}}\right)-\varphi_{p} \frac{\partial \pi}{\partial x}-\frac{\mu \varphi_{p}}{K_{p}} u_{p}-\frac{\rho}{\varphi_{p}}\left(u_{p} \frac{\partial u_{p}}{\partial x}+v_{p} \frac{\partial u_{p}}{\partial y}\right)-\varphi_{p} c_{p} u_{p} \sqrt{u_{p}^{2}+v_{p}^{2}}-\varphi_{p} \zeta\left(u_{p}-u_{f}\right)=0 \\
\mu\left(\frac{\partial^{2} v_{p}}{\partial x^{2}}+\frac{\partial^{2} v_{p}}{\partial y^{2}}\right)-\varphi_{p} \frac{\partial \pi}{\partial y}-\frac{\mu \varphi_{p}}{K_{p}} v_{p}-\frac{\rho}{\varphi_{p}}\left(u_{p} \frac{\partial v_{p}}{\partial x}+v_{p} \frac{\partial v_{p}}{\partial y}\right)-\varphi_{f} c_{p} u_{p} \sqrt{u_{p}^{2}+v_{p}^{2}}-\varphi_{f} \zeta\left(v_{p}-v_{f}\right)=0 \\
\frac{\partial u_{f}}{\partial x}+\frac{\partial v_{f}}{\partial y}=0, \frac{\partial u_{p}}{\partial x}+\frac{\partial v_{p}}{\partial y}=0 \tag{71}
\end{array}\right.
$$

where:

The lid-driven cavity flow problem

Bidisperse porous medium case: mathematical model
where:

- ρ and μ are the density and viscosity of the fluid
- φ_{f} and K_{f} are the volume fraction and permeability of the f-phase
- φ_{p} and K_{p} are the porosity and permeability of the p-phase
- ζ is the coefficient for momentum transfer between the two phases (usually taken $\zeta=1$)

Following Nield and Kuznetsov ${ }^{23}$, we introduce the average velocity as:

$$
\begin{equation*}
u_{\mathrm{avg}}=\varphi_{f} u_{f}+\left(1-\varphi_{f}\right) u_{p}, \quad v_{\text {avg }}=\varphi_{f} v_{f}+\left(1-\varphi_{f}\right) v_{p} \tag{72}
\end{equation*}
$$

We perform similar steps as in the monodisperse case (nondimensionalization, streamfunction-vorticity formulation, discretization using central differences, numerical solution via G-S iteration).

[^13]
The lid-driven cavity flow problem

Bidisperse porous medium case: variation of Reynolds number

We set $\varphi_{f}=\varphi_{p}=0.4, \mathrm{Da}_{f}=0.25, \mathrm{Da}_{p}=0.00025$ and consider $\mathrm{Re}=10,100,1000$:

(a) $\operatorname{Re}=10$

(b) $\mathrm{Re}=100$

(c) $\mathrm{Re}=1000$

Figure: Average velocity magnitude and streamlines at different Reynolds numbers

The lid-driven cavity flow problem

Bidisperse porous medium case: variation of Darcy number

We set $\varphi_{f}=\varphi_{p}=0.4, \mathrm{Da}_{f}=0.25, \operatorname{Re}_{p}=100$ and consider $\mathrm{Da}_{p}=0.25,0.0025,0.00025$:

(a) $\mathrm{Da}_{p}=0.25$

(b) $\mathrm{Da}_{p}=0.0025$

(c) $\mathrm{Da}_{p}=0.00025$

Figure: Average velocity magnitude and streamlines at different Darcy numbers

References I

[1] UKNG Ghia, Kirti N Ghia, and CT Shin. "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method". In: Journal of computational physics 48.3 (1982), pp. 387-411.
[2] Robert Gutt and Teodor Groșan. "On the lid-driven problem in a porous cavity. A theoretical and numerical approach". In: Applied Mathematics and Computation 266 (2015), pp. 1070-1082.
[3] Mirela Kohr, Sergey E Mikhailov, and Wolfgang L Wendland. "Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L^{∞} tensor coefficient under relaxed ellipticity condition". In: Discrete and Continuous Dynamical Systems (2021).
[4] Mirela Kohr, Sergey E Mikhailov, and Wolfgang L Wendland. "Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces". In: Calculus of Variations and Partial Differential Equations 61.6 (2022), p. 198.
[5] Mirela Kohr, Sergey E Mikhailov, and Wolfgang L Wendland. "On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces". In: Journal of Mathematical Analysis and Applications 516.1 (2022), p. 126464.
[6] Mirela Kohr and Radu Precup. "Analysis of Navier-Stokes Models for Flows in Bidisperse Porous Media". In: Journal of Mathematical Fluid Mechanics 25.2 (2023), p. 38.

References II

[7] Carlos Henrique Marchi, Roberta Suero, and Luciano Kiyoshi Araki. "The lid-driven square cavity flow: numerical solution with a 1024×1024 grid". In: Journal of the Brazilian Society of Mechanical Sciences and Engineering 31 (2009), pp. 186-198.
[8] D.A. Nield and A. Bejan. Convection in Porous Media. Springer International Publishing, 2017. ISBN: 9783319495620.
[9] DA Nield and AV Kuznetsov. "A note on modeling high speed flow in a bidisperse porous medium". In: Transport in porous media 96 (2013), pp. 495-499.
[10] DA Nield and AV Kuznetsov. "The onset of convection in a bidisperse porous medium". In: International Journal of Heat and Mass Transfer 49.17-18 (2006), pp. 3068-3074.
[11] Anatoliy Ivanovich Perov and AV Kibenko. "On a certain general method for investigation of boundary value problems". In: Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya 30.2 (1966), pp. 249-264.
[12] Adrian Petrușel, Gabriela Petrușel, and Cristina Urs. "Vector-valued metrics, fixed points and coupled fixed points for nonlinear operators". In: Fixed Point Theory and Applications 2013.1 (2013), pp. 1-21.
[13] Radu Precup. "The role of matrices that are convergent to zero in the study of semilinear operator systems". In: Mathematical and Computer Modelling 49.3-4 (2009), pp. 703-708.

[^0]: ${ }^{1}$ The symmetries of \mathbb{A} are imposed by the symmetries of \mathbb{T} and $\mathbb{E}(\mathbf{u})$

[^1]: ${ }^{2}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L^{∞} tensor coefficient under relaxed ellipticity condition". 2021.

[^2]: ${ }^{3}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L^{∞} tensor coefficient under relaxed ellipticity condition". 2021.
 ${ }^{4}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces". 2022.
 ${ }^{5}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces". 2022.

[^3]: ${ }^{6}$ Nield, D.A. and Bejan, A. Convection in Porous Media. 2017.
 ${ }^{7}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces". 2022.
 ${ }^{8}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "On some mixed-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces". 2022.

[^4]: ${ }^{9}$ Nield, DA and Kuznetsov, AV. "The onset of convection in a bidisperse porous medium". 2006.
 ${ }^{10}$ Nield, DA and Kuznetsov, AV. "A note on modeling high speed flow in a bidisperse porous medium". 2013.

[^5]: ${ }^{11}$ Kohr, Mirela and Precup, Radu. "Analysis of Navier-Stokes Models for Flows in Bidisperse Porous Media". 2023.

[^6]: ${ }^{12}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L^{∞} tensor coefficient under relaxed ellipticity condition". 2021.

[^7]: ${ }^{13}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces". 2022.

[^8]: ${ }^{14}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "Dirichlet and transmission problems for anisotropic Stokes and Navier-Stokes systems with L^{∞} tensor coefficient under relaxed ellipticity condition". 2021.
 ${ }^{15}$ Kohr, Mirela, Mikhailov, Sergey E, and Wendland, Wolfgang L. "Non-homogeneous Dirichlet-transmission problems for the anisotropic Stokes and Navier-Stokes systems in Lipschitz domains with transversal interfaces". 2022.

[^9]: ${ }^{16}$ Precup, Radu. "The role of matrices that are convergent to zero in the study of semilinear operator systems". 2009.
 ${ }^{17}$ Petrușel, Adrian, Petrușel, Gabriela, and Urs, Cristina. "Vector-valued metrics, fixed points and coupled fixed points for nonlinear operators". 2013.

[^10]: ${ }^{18}$ Perov, Anatoliy Ivanovich and Kibenko, AV. "On a certain general method for investigation of boundary value problems". 1966.

[^11]: ${ }^{19}$ Nield, D.A. and Bejan, A. Convection in Porous Media. 2017.
 ${ }^{20}$ Gutt, Robert and Groșan, Teodor. "On the lid-driven problem in a porous cavity. A theoretical and numerical approach". 2015.

[^12]: ${ }^{21}$ Ghia, UKNG, Ghia, Kirti N, and Shin, CT. "High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method". 1982.
 ${ }^{22}$ Marchi, Carlos Henrique, Suero, Roberta, and Araki, Luciano Kiyoshi. "The lid-driven square cavity flow: numerical solution with a 1024×1024 grid". 2009 .

[^13]: ${ }^{23}$ Nield, DA and Kuznetsov, AV. "A note on modeling high speed flow in a bidisperse porous medium". 2013.

